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Abstract—Touch-screen technique has gained the large popularity in human-screen interaction with modern smartphones. Due to

the limited size of equipped screens, scrolling operations are indispensable in order to display the content of interest on screen.

While power consumption caused by hardware and software installed within smartphones is well studied, the energy cost made by

human-screen interaction such as scrolling remains unknown. In this paper, we analyze the impact of scrolling operations to the power

consumption of smartphones, finding that the state-of-art strategy of smartphones in responding a scrolling operation is to always use

the highest frame rate which arouses huge computation burden and can contribute nearly 50 percent to the total power consumption of

smartphones. In recognizing this significance, we further propose a novel system, energy-efficient engine (E3), which automatically

tracks the scrolling speed and adaptively adjusts the frame rate according to user preference. The goal of E3 is to guarantee the user

experience and minimize the energy consumption caused by scrolling at the same time. Extensive experiment results demonstrate the

efficiency of E3 design. On average, E3 can save up to 60 percent of the energy consumed by CPU and 35 percent of the overall

energy consumption.

Index Terms—Energy efficiency, user experience, touch screen, scrolling operation, frame rate
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1 INTRODUCTION

SMARTPHONES have gained large popularity rapidly over
the recent years. Almost one billion smartphones have

been sold since 2009 [17]. The huge popularity of smart-
phones is due to the availability of millions of appealing
applications, bringing users new style of information shar-
ing, efficient communications, and plenty of entertainment.
In order to provide more functionality, new features and
powerful hardwares have been constantly embedded into
smartphones. The improvements in battery capacity, how-
ever, have not kept the pace with the increasing demand for
energy posed by applications [24]. Enhanced features and
the complex operations performed by smartphones are rap-
idly draining the limited onboard battery life. Longer bat-
tery life has been considered as the most important feature
to smartphone users [7].

Existing studies on extending smartphone battery life
mostly focus on saving power consumed by CPU computa-
tion [6], [23], radio usage [4], [21], [25], and application
activities [18], [20]. Furthermore, power consumption could

be reduced by adjusting screen display parameters such as
LCD backlight level [2] and OLED color scheme [9]. With
the rapid advancement of touch-screens, most mobile devi-
ces are equipped with touch-screens. Due to the limited size
of the screen, finger operations such as clicking and scroll-
ing are indispensable in order to display the content of
interest on screen. ProfileDroid [27] reveals that the interac-
tion-intensive applications may generate more than
20 input-events per second, which results in more than
30 percent time for human-screen (i.e., touch-screen) inter-
actions when using applications like browsing and gaming.
Although many efforts have been made to improve the
energy-efficiency of mobile devices, the impact of human-
screen interactions on the power consumption of mobile
devices remains unknown.

To illustrate the significance of human-screen interac-
tions, we measure the power consumption of a smart-
phone, Nexus S, during one typical web surfing process, as
shown in Fig. 1. The surprising finding is that after loading
the content of the webpage, the power consumption level
jumps three times higher than usual upon each time the
user scrolls the screen. During this web surfing process,
the scrolling operations consume up to 53:4 percent of the
total energy consumption, whereas loading the web
browser (triggered by a click) and open the webpage only
consume 6:3 percent in total. We find that the human-
screen interaction causes large energy consumption. The
human-screen interaction, however, is essential for touch-
screen smartphone usage and dominates the user experi-
ence. To save the energy consumption caused by the
human-screen interaction, we face the following great chal-
lenges. First, the energy consumption should be reduced
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without compromising user experience. Second, the
response to human-screen interaction should be instant
and accurate. Finally, the solution should be lightweight
and not bring in noticeable overhead. Although there has
been work [2], [9] on adaptive screen power management
of mobile devices, the focus is on saving energy through
changing the LCD backlight and OLED color scheme. To
the best of knowledge, our work is the first attempt to
tackle the problem of high power consumption caused by
the human-screen interactions.

In this paper, we empirically investigate the impact of
human-screen interactions to the power consumption on
mobile devices including smartphones and tablets through
over 300 volunteers. Specifically, we find that the root cause
of the high energy consumption incurred by scrolling is
because of the current frame rate adjusting strategy on
smartphones that always uses the highest frame rate to dis-
play contents. Our experiment results show the amount of
energy consumed by scrolling can reach up to 50 percent on
average over a large range of applications.

Based on our observations, we propose energy-efficient
engine(E3), an innovative frame rate adaptation system,
which can adaptively adjust the satisfied frame rate without

compromising the user experience. In E3, we define a new
metric called satisfied frame rate, which is the minimum frame
rate under which human eyes cannot feel falters on the
screen. We find that Logarithmic model can accurately cap-
ture the relationship between the screen-scrolling speed and
satisfied frame rate based on least-squares regression analy-
sis. We employ an uniform satisfied frame rate model for all

users. To build this model, E3 analyzes the traces of over 300
volunteers and generates a fitting logarithmic curve that sat-

isfies most of users. After a user installs E3 on a smartphone,
the user utilizes the uniform model as his/her user prefer-
encemodel to describe the relationship between the scrolling

speed and the satisfied frame rate. Since E3 generates the
uniformmodel from the traces of around 300 volunteers, the
model may not satisfy all the users.

Thus, E3 employs an cloud server to optimize the user

preference model. E3 provides corresponding mechanism
to build a user preference model for each user, i.e., user-
specific satisfied frame rate model, and then sends it to

E3 cloud server to accumulate more user preference traces.

E3 cloud server is able to collect these user preference traces
continuously to update the uniform satisfied frame rate.

When E3 is installed after a period of time, it can generate a

user specific frame rate model based on the scrolling data of
the user during this period, and such a model can better fit
the user preference.

The main advantage of E3 is two-fold. First, E3 can opti-
mize the frame rate with respect to energy consumption
while satisfying the user-experience simultaneously. Sec-

ond, E3 is easy to implement and computational feasible on
mobile platforms including both smartphones and tablets.

Our prototype implementation of E3 on Android-based

mobile devices verifies the feasibility of using E3 in real
environments. We implement our system on five different
mobile devices including smartphone and tablet. Our proto-

type of E3 verifies the feasibility of the design in real-world
scenarios. We conduct extensive experiments with 327 vol-

unteers to evaluate the performance of E3. The results show

that, on average, E3 can save up to 35 percent of the overall
energy consumption while keeping a user satisfaction rate
over 88 percent.

The remainder of this paper is organized as follows.
Related work is reviewed in Section 2. We give an in-depth
analysis of energy consumption caused by human-screen
interaction in Section 3. Section 4 presents the design details
of E3. Section 5 introduces the prototype implementation.

In Section 6, we evaluate the performance of E3 and present
the results. Finally, we give conclusive remarks in Section 7.

2 RELATED WORK

Active work has been done to improve the energy-efficiency
of smartphones. We categorize the existing work in the
following.

Smartphone power model. Many efforts have been made to
improve the accuracy of smartphone energy profiling. In
the earlier work, the energy estimation relay on external
hardware [11], [5]. Dong and Zhong [10] first attempted to
design a self-constructive power model of mobile devices.
While Pathak et al. gave another trial on accounting energy
consumption based on the system-call [19] and then
improved his work to a fine grained energy accounting
system [20].

CPU power consumption. Due to the increasingly comput-
ing power, the energy consumption of CPU also grows rap-
idly. Studies on energy consumption of smartphone CPU
endeavored to find an energy-efficient strategy to dynami-
cally adjusting the CPU frequency and voltage based on the
concept of DVFS [6], [23].

Radio power consumption. Since communication is the
basic function of smartphones, the power consumption of
wireless module draws a lot attention in recent research
work. Balasubramanian et al. first found the tail [4] over-
head which is caused by the lingering in high power states
after completing a transfer. Then, in 2012, Qian et al. elabo-
rately summarized several optimizing schemes [21], [22] on
tail energy. Moreover, Athivarapu et al. explored a method
to reduce the radio usage by monitoring the program execu-
tion pattern [3]. Furthermore, Schulman et al. discussed the
impact of signal strength on communication energy in [25].

Application power consumption. With the Explosive growth
of smartphone applications, increasingly researchers are
interested in investigating the energy consumption in appli-
cations. Narseo made a statistical analysis on the energy

Fig. 1. Energy consumption of screen scrollings during a web surfing on
Nexus S.
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consumption of different types of Apps in [26]. In addition,
[13] discussed the impact on energy consumption of cooper-
ation between Apps and operating system. Pathak et al.
[18], [20] proposed the concept of energy bug in smart-
phones and gave a first trial on diagnosing energy bugs.

Display power consumption. Due to the physical character-
istics of display hardware, energy saving could be achieved
by wisely adjusting LCD and OLED display parameters.
Existing work studies screen hardware power consumption
through studying the screen power model [16], calibrating
the backlight level [2], or the display color scheme [9], while
our work explores the power consumption of mobile device
made by exorbitant screen frame rate.

Although the battery-life issues of mobile devices have
gained much attention, the energy cost made by human-
screen interactions such as scrolling remains elusive. There
are some studies on frame rate recently, but these works
mainly focus on how to improve frame rate through hard-
ware and software [28] or how to use frame rate as a QoS
metric [8], [15]. Therefore, existing work has not concerned
the impact of frame rate to the energy consumption.

3 EMPIRICAL STUDIES & TRACE ANALYSIS

We first conduct an empirical study to show that human-
screen interactions may be a new element in the spectrum
of power consumption on smartphones. Among all normal
interaction operations, scrolling is a very typical one to dis-
play the content of interest on screen. Moreover, the interac-
tion-intensive applications such as browsing and reading
are more likely to have a higher ratio of scrolling to click
(1:4 in AngryBirds and 1:1 in CNN) [27]. Besides, the energy
consumption caused by click is much lower than scrolling.
In this section, we explore the influence of scrolling opera-
tions to the energy consumption on smartphones.

3.1 Power Consumption Caused by Scrolling on
Screen

To illustrate the relationship between screen scrolling oper-
ations and power consumption, we first examine one scroll-
ing operation when browsing a webpage using a typical
smartphone (Nexus S). During this operation, we record the
CPU utilization and the measurement of energy consump-
tion then plot the results in Fig. 2. It is clear to see that, once

the scrolling starts, the CPU utilization immediately
increases to 100 percent. Meanwhile, the power jumps up
twice higher than usual. Moreover, the CPU utilization and
power consumption keep high until the scrolling action
ends. Similar results are obtained through more trials of this
experiment with different users and mobile devices. Fur-
thermore, we also conduct this experiment with different
scrolling speeds and directions, and get the same results.

We then further examine the impact of scrolling opera-
tions among different most popular applications on differ-
ent smartphones. Specially, we randomly select 327
volunteers (i.e., 56 faculty members and 271 students) on
campus during lunch time, and let them try at least five
applications installed on our test devices (i.e., Nexus One,
Nexus S, Nexus Prime, Galaxy S II, Galaxy Tab) for
10 minutes. Fig. 3 shows the average scrolling time ratio
and the corresponding energy consumption ratio of each
tested mobile application. The scrolling time ratio means
the proportion of time during scrolling operation to the
time of each application usage. It can be seen that for most
of the interaction-intensive applications, the scrolling time
ratio is higher than 30 percent (For browser, it’s almost
60 percent).

We further analyze the power consumption caused by
scrolling and all other components and factors. The energy
consumption is divided into three major factors Scrolling,
Screen backlight, andOthers: 1) Scrolling represents the part of
energy consumption caused by scrolling. This part of energy
consumption is measured by separating the increased power
that strongly related to scrolling operation. For example, the
scrolling operation causes power increment as shown in
Fig. 2, and we classify energy caused in such increments as
Scrolling energy consumption. 2) Screen backlight represents
energy consumption caused by screen light emitting. It can
be measured by employee the mechanisms presented in [9],

Fig. 2. CPU utilization and energy consumption during one scrolling
operation on a webpage.

Fig. 3. Scrolling time ratio and energy consumption ratio of several popu-
lar smartphone applications.
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[16]. We note that during the experiments, we use a low fre-
quency to sample the screen display, which only results neg-
ligible energy consumption compared to the energy
consumption caused by screen emitting. 3) Others represent
the energy consumption caused by various power consum-
ers such as loading applications and contents, radio usage,
audio playback, and GPS module. Since we can measure the
total energy consumption by using a power meter (as shown
in Section 5), the energy consumption of the three compo-
nents could be obtained.

We find that in most cases, the scrolling energy con-
sumption of the Browser and the Reader could reach up to
59:8 and 52:3 percent of the total energy consumption,
respectively. Regardless of the high energy consumption
caused by Radio usage and GPS module, for some applica-
tions like Facebook App and Google Map, scrolling is
always the most significant factor (Google Map gets a 37:2
percent share of the total energy consumption) with respect
to energy consumption. The scrolling energy of Youtube
and Pandora are not as high as the others due to few scroll-
ings are needed during their usage. These results show that
scrolling could be the main contributor of the energy con-
sumption on smartphones.

Also, from Fig. 3, it is surprising to see that the energy
consumption ratios of the Others are not very high, which
indicates that the network connection and radio transmis-
sion may not play a main role in smartphone energy con-
sumption for every daily-used applications.

In general, we find that the average scrolling energy con-
sumption could reach up to 46 percent of the total energy
consumption over all the interaction-intensive applications.
The reason that scrolling operations can significantly affect
the energy consumption of smartphones is because,
with the limited size of the smartphone screen, scrolling is
indispensable in human-screen interaction. How to opti-
mize the scrolling operation in term of power consumption
is of great importance. In this paper, we focus on minimiz-
ing the energy consumption caused by scrolling.

3.2 Impact of Frame Rate Strategy

During the processing of one scrolling, there are three pro-
cedures: catching, processing, and event feedback. First, in the
catching procedure, an interrupt is triggered to inform the
operating system that there is a user input on the touch
screen. Then, the operating system reads arguments of this
input and passes them to the relative application. Second,
during the processing procedure, the application calls the

response functions and generates a respond of this input
event. After getting the respond, the application sends
requests to the operating system. Finally, in the event feed-
back procedure, the operating system receives requests
from the application, calculates the frame of image to be dis-
played and refreshes screen to display it. Fig. 4 illustrates
the workflow of display updates in one scrolling operation.
During each scrolling, the three procedures iterate fre-
quently. Any of these three procedures is possible to cause
the high energy consumption. Nevertheless, based on the
explanation above, since there is little computation in
the catching procedure, energy consumption caused by the
catching should be very low. Besides, the computation in
the processing procedure is related to the input arguments,
i.e., the scrolling speed and direction. From the results of
our experiment in Section 3.1, however, scrolling speed and
direction have no impact on energy consumption. This
implies that the energy consumption caused by the process-
ing procedure is low. Based on the above analysis, in order
to realize a smooth screen display in the event feedback pro-
cedure, the screen updating operation needs to be per-
formed dozens of times per second. Each time the screen
updates, CPU resource is consumed to build a new image
to display. We thus infer that the screen update in feedback
procedure incurs massive CPU resource and therefore high
power consumption.

To verify our analysis, we further set up experiments to
examine the energy consumption caused by screen updat-
ing in the feedback procedure. Here a frame refers to the
image displayed on screen after one screen update opera-
tion and a frame rate, denoted as r, refers to the frequency
of screen update operation, measured with the unit of
frame per second (FPS). We first monitor frame rate in real-
time via modifying the source code of Android. Fig. 5 plots
the frame rate and power consumption when surfing a
webpage on a Nexus S smartphone. During one scrolling
operation, the operating system uses all the necessary CPU
resource to promote the frame rate until either 60fps (the
hardware and software upper bound of the frame rate) or
the CPU utilization of 100 percent is reached. The results
in Fig. 5 show that the energy consumption has the obvi-
ous same changing trend with the frame rate. We also get
the same result on our other test devices. The results con-
firm our inference that the energy consumption is highly
related to the frame rate.

Fig. 4. Illustration of display updates during a scrolling operation.
Fig. 5. System frame rate and power consumption during a scrolling
operation.
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To capture the relationship between the frame rate and
the power consumption more accurately, we collect a trace
of frame rate and the corresponding power consumption
measurements and analyze the energy cost under different
frame rate. Fig. 6 shows the scatter plot of CPU power con-
sumption with frame rate varying from 10 to 60 fps. We
observe that the CPU power consumption is linearly pro-
portional to the frame rate and the power consumption
raises from 150 to almost 1;000 mW while frame rate
increases to 60 fps. The strong correlation between the frame
rate and the power consumption reveals that the screen
update operation is the major cause that incurs the high
power consumption while scrolling.

3.3 Exploring User Experience on Frame Rate

Based on the analysis above, we know that higher frame
rate will lead to larger energy consumption. One straight-
forward solution for energy saving is to simply reduce the
frame rate no matter how a user operates on the screen.
However, blindly carrying this out is not feasible since inap-
propriate low frame rate will make the user feel faltering
when scrolling the screen. To explain this phenomenon, we
define the image difference between two adjacent frames as
IDAF ¼ Lðbitðfi�1Þ; bitðfiÞÞ, where bitðfiÞ is the binary
string representation of the ith frame (i.e., the picture that is
displayed on screen) and Lðx1; x2Þ is the Levenshtein Distance
[14] of binary string x1 and x2.

Apparently, a higher IDAF value means bigger image
difference between two adjacent frames, which indicates a
more inconsistent display. More specifically, with frame
rate r in a period T , IDAF is defined as:

IDAF ¼ 1

r� T

Xr�T�1

i¼0

LðbitðfiÞ; bitðfiþ1ÞÞ

� 1

r� T
Lðbitðft¼0Þ; bitðft¼T ÞÞ; (1)

where Lðbitðft¼0Þ; bitðft¼T ÞÞ is the display change in T ,
which is in proportion of scrolling distance S. Moreover, S
can be expressed as S ¼ s� T . Thus, the relationship

between IDAF , s, r and T is IDAF / s�T
r�T / s

r, when r

decreases, the IDAF increases. In other words, lower frame
rate would result in a bigger difference between two adja-
cent frames’ images. Therefore, if a low frame rate is
adopted to respond to a scrolling operation, the user would
feel faltering about the display on screen. On the contrary,

when scrolling speed s decreases, the IDAF decreases,
which implies the user may feel more comfortable on the
screen display. We denote rminðsÞ as the minimum frame
rate that the user would not feel the display is faltering
while scrolling at speed s. To guarantee the user experience,
we need to adopt a frame rate r so that r � rminðsÞ. On the
other hand, we also need to minimize the power consump-
tion caused by scrolling operations. Therefore, the optimal
frame rate with respect to user experience and power con-
sumption is rminðsÞ.

To determine the rminðsÞ, we probe the satisfied frame rate
at which the user would not feel faltering of users at differ-
ent scrolling speeds by field testing. In our test, given a
scrolling speed, we automatically increase the frame rate
from the lowest value (i.e., 5 fps) to the highest value (i.e.,
60 fps) to display a scrolling webpage and let a user stop the
process when she/he satisfies with the current frame rate.
We randomly pick 327 volunteers on campus and let each
volunteer do our tests for 5 minutes. Fig. 7 plots the cumula-
tive distribution function (CDF) of satisfied frame rate at
four different scrolling speed, i.e., 45, 200, 420, 1;260 pixels
per second.

We find that the satisfied frame rate increases with the
increasing of the scrolling speed. For example, at the speed
of 45 pixels per second, 80 percent volunteers are satisfied
with 23 fps and the satisfied frame rate value increases to
59 fps at the speed of 1;260 pixels per second. It can also be
seen that, comparing with the default frame rate strategy
which always uses the maximum frame rate (e.g., typically
60 fps), it is promising to use the satisfied (if not optimal)
frame rate so that power consumption caused by higher
frame rate can be saved while still satisfying users.

To discover the relationship between the scrolling
speed and the satisfied frame rate, we analyze the trace
collected in our field tests. Fig. 8 depicts the scatter plot
of the satisfied frame rate versus the corresponding scroll-
ing speed. The inset in Fig. 8 shows the plot on logarith-
mic-linear scale. From the inset, we find the satisfied
frame rate is linear with the scrolling speed, indicating
the satisfied frame rate is some form of logarithmic func-
tion of the scrolling speed.

3.4 Modeling the Appropriate Frame Rate

To further quantify the relationship between the satisfied
frame rate and the scrolling speed, we examine four models,
as listed in Table 1, which could generate similar

Fig. 6. Relationship between frame rate and CPU power consumption.
Fig. 7. CDF of the satisfied frame rate in different scrolling speeds.
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distribution by using the least-square regression analysis. In
least-square regression, the estimator of each model is the
Residual sum of squares, which is defined as follows:

RSS ¼
Xn
i¼1

ðrminðsiÞ � fðsiÞÞ2; (2)

where rminðsiÞ is the optimal frame rate at speed si and fðsiÞ
is predicted frame rate given by the model at speed si. A
small RSS indicates a tight fit of the model to the data.

We apply these four models listed in Table 1 to the data
of each individual volunteer. The model parameters are
selected to minimize RSS value. We plot the CDF of the
average RSS in Fig. 9 and list the average RSS value of
each model in Table 1. We find that the Linear model has a
larger RSS value of 32:15 which indicates the average devi-
ation on each predict point of this model is as high asffiffiffiffiffiffiffiffiffiffiffi
32:15

p � 5:67 fps.
Both the Logarithmic and the Inversely proportional

model have a much lower average RSS value of 6:14 and
6:61, respectively. In summary, the Logarithmic model has
the minimum average deviation on each predict point.
Thus, the Logarithmic model is a better description of the
relationship between the screen-scrolling speed and the
satisfied frame rate, i.e.,

rminðsÞ ¼ a� logðsþ bÞ þ c: (3)

Based on the Logarithmic model and trace from 327 volun-
teers, a user preference model, i.e., the satisfied frame rate
model, could be achieved.

4 DESIGN OF E3

From the previous investigation, we know that the 60 fps
frame rate strategy costs excessive CPU resource, which
leads to the high energy consumption. However, in many

circumstances, a much lower frame rate is proven to be opti-
mal (e.g., 24 fps in movie), which indicates that it is possible
to relieve the stress on both CPU and battery of smart-
phones by changing the frame rate strategy and reducing
the frequency of display update. In this section, we discuss
the design details of our system E3.

4.1 Overview

From the analysis in Section 3.4, we know that the Logarith-
mic model can precisely describe a user’s preference on
frame rate. Based on the preference model, the frame rate
could be reduced for energy saving while leaving the user
experience un-compromised. In this section, we present an
overview of E3 design. E3 first starts to monitor user actions
performed on the touch-screen and estimates the real-time

scrolling speed. After that, each time the screen updates, E3

adjusts the frame rate based on the real-time scrolling speed

and the Logarithmic model. In addition, E3 could also take
user feedbacks to evolve the user preference model over

time. The architecture of E3 is shown in Fig. 10. It consists
of three stages: the Modeling Stage, the Reacting Stage, and
the Evolving Stage.

The purpose of the Modeling Stage is to build a user pref-
erence model in E3 cloud server. During this stage, E3 first

builds a uniform satisfied frame rate model in E3 cloud
server based on the logarithmic relationship between the
screen-scrolling speed and users’ satisfied frame rate. After
that, the Logarithmic model can be further improved.

Fig. 8. Satisfied frame rate in different scrolling speeds.

TABLE 1
Possible Formulations

Name Formulation Average RSS

Linear rminðsÞ ¼ a� sþ b 32.15
Sqrt rminðsÞ ¼ a� ffiffiffiffiffiffiffiffiffiffiffi

sþ b
p þ c 11.40

Inverse rminðsÞ ¼ a
sþb þ c 6.61

Log rminðsÞ ¼ a� logðsþ bÞ þ c 6.14

Fig. 9. CDF of RSS on Linear, Sqrt, Inverse, and Logarithmic formula.

Fig. 10. E3 architecture.
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Finally, the preference model is stored in Uniform Preference

Model. Additionally, E3 is able to collect more user prefer-
ence traces from users’ feedbacks to update continuously

the uniform satisfied frame rate model in E3 cloud server.
Such an approach enables the uniform model to become
more and more accurate and fits all the users better.

In the Reacting Stage, the Scrolling Speed Extraction proce-
dure works in the background to constantly monitor the
touch screen events and estimate the real-time scrolling
speed. With the Uniform Preference Model established in the
Modeling Stage, the Optimal Frame Rate Calculation procedure
can be used to calculate the optimal frame rate from
the real-time scrolling speed. Finally, in the procedure of
Frame Rate Controlling, the optimal frame rate is applied to
the operating system for energy saving.

In order to keep the pace with the changing of the prefer-
ence of users, we design the Evolving Stage, which allows E3

to dynamically update the preference model based on the
feedback from the users. In particular, the user’s feedback is

first collected in the Feedback Collecting procedure. Then, E3

adjusts the parameters of preference model in the Model
Parameter Calibration procedure according to the feedback.
Finally, the Preference Model Improvement procedure is
invoked to regenerate a new specific preference model for

the user. After that, the specific model is sent to E3 cloud
server to accumulate more user preference traces, updating
the uniform model.

In the rest of this section, we elaborate the details of each
stage accordingly.

4.2 Modeling Stage

In Section 3, we find that the relationship between the
screen-scrolling speed and the satisfied frame rate can be
described using a Logarithmic model. To build this Log-
arithmic model, E3 analyzes the traces of 327 volunteers
and generates a fitting logarithmic curve that satisfies

most of the users. Specifically, E3 generates a logarithmic
curve which maps a scrolling speed to a frame rate
greater than or equal to most users’ satisfied frame rate
at the scrolling speed.

In the Logarithmic model, the frame rate increases with
the increasing of the scrolling speed to guarantee user expe-
rience. However, a higher frame rate also causes higher
energy consumption. When browsing a webpage, the user
could scroll fast on the screen to reach a particular position
on the webpage. During this scrolling, the user often skips
and pays no attention to the webpage contents before he/
she stops scrolling. It is thus unnecessary to adopt a high
frame rate during fast scrolling since the frames refreshed
are ignored during the scrolling. The Logarithmic model in
[29], however, still generates a high frame rate when scroll-
ing fast. Therefore, the Logarithmic model can be further
improved to achieve more energy savings based on the
scrolling speed.

Specifically, in the improved model, the frame rate is
generated according to the previous Logarithmic model
when users scroll at a low speed and read the contents
displayed on screen, while the frame rate is set to a low
fixed value when users scroll at a high speed and pay no
attention to the contents displayed on screen. It is needed

to find a threshold speed that a user is regarded as paying
no attention to the contents displayed on screen if he/she
scrolls the screen at a speed higher than it.

In order to find this threshold, 327 volunteers are
requested to first scroll the screen when they are reading
the contents displayed on screen and next when they just
scroll fast and pay no attention to the contents displayed on
screen. The scrolling speeds are recorded. Fig. 11a shows
the statistical result. It can be seen that there is a large gap
of scrolling speeds between the two conditions, and the
threshold speed to distinguish the two conditions can be
calculated by solving the equation

Xn
i¼1

ðx�AiÞ2 ¼
Xn
i¼1

ðx�BiÞ2: (4)

Hence,

x ¼
Xn
i¼1

A2
i �B2

i

2ðAi �BiÞ ¼
Xn
i¼1

Ai þBi

2
; (5)

where x is the threshold scrolling speed, A is a set contain-
ing the scrolling speeds recorded when volunteers are read-
ing the contents displayed on screen, B is a set containing
scrolling speeds when volunteers are scrolling fast and pay-
ing no attention to the contents displayed on screen, and Ai

and Bi is the ith scrolling speed in the set A and B,
respectively.

In this experiment, x is solved as 725 pixels=second. So
when a user scrolls on screen at a speed higher than
725 pixels=second, the user is regarded as paying no atten-
tion to the contents displayed on screen. In that case, the
frame rate can be fixed to a low value as long as the user
feels satisfied and regards it as a smooth display when fast
scrolling.

In order to find a minimum satisfied frame rate (called as
a cut-off frame rate), the 327 volunteers are requested to
carry out another an experiment. In the experiment, a pro-
gram is installed into mobile devices detecting the users’
cut-off frame rates when they scroll the screen at a high
speed and pay no attention to the contents displayed on
screen. Fig. 11b shows the distribution of 327 volunteers’
cut-off frame rates. Assume that � is the random variable
representing user’s satisfied cut-off frame rate, then � is a
normal distribution

� � Nðm; s2Þ; (6)

Fig. 11. (a) Scrolling speed while reading or skipping the contents dis-
played on screen, (b) Volunteers’ satisfied frame rate when scrolling and
skipping the contents displayed on screen.
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where m is the mean or expectation of the distribution and s

is standard deviation. In the normal distribution Nðm; s2Þ,

P ð� � mþ 2sÞ ¼ 97:5%; (7)

which means 97:5 percent of users’ satisfied cut-off frame
rate is less than or equal to mþ 2s. So the uniform cut-off
frame rate in improved model is set to mþ 2s ¼ 32:5 fps
(the black solid line in Fig. 11b). Under the frame rate, about
97:5 percent users are satisfied when they just scroll fast and
ignore the contents displayed on screen.

Therefore, we could improve the logarithmic model by
using the fixed cut-off frame rate (i.e., 32:5 fps) when scroll-
ing speed is greater than 725 pixels=second, while the real-
time frame rate is still generated according to the logarith-
mic model in the case that the scrolling speed is not greater

than 725 pixels=second. This improvement is applied in E3

cloud server, and the improved model is used as an uniform

user preference model. When E3 is installed into a user’s

mobile device for the first time, it is connected to E3 cloud
server and obtain the latest uniform user preference model.
After that, the real-time frame rate is generated according to
the uniform user preference model.

Additionally, since E3 generates the uniform model from
the traces of 327 volunteers, the model may not satisfy all
the users. Thus, the model needs to be further improved
after installation to satisfy user experience. Since different

users may have different scrolling habituations, when E3 is
installed after a period of time, it can generate an user spe-
cific model based on the scrolling data of the user during
this period,and such a model can better fit the user prefer-
ence. (We provide the detailed information in Section 4.4).

Due to this consideration, E3 keeps tracing user’s specific

model, and uploads it to E3 cloud server. According to the

original data and the uploaded data, E3 can update the uni-
form model automatically in the cloud server so that the
model fits all users better. Hence, the uniform model
becomes more and more accurate as more user’s specific

models are collected to E3 cloud server. The frame rate gen-
erated by the uniform model always satisfies most users.
Moreover, based on traces from more users, the threshold
speed and the cut-off frame rate are updated continuously
so that they will also become more and more accurate.

4.3 Reacting Stage

After obtained the user preference model, E3 uses it to gen-
erate the optimal frame rate based on the user’s scrolling
speed in real time. Then, the optimal frame rate is used to
replace the default system frame rate for energy saving. In
this section, we first present the scrolling speed extraction,
then discuss the frame rate controlling later.

4.3.1 Scrolling Speed Extraction

In order to dynamically adjust the frame rate in real-time,

E3 needs to monitor the real-time scrolling speed. Assume
that there is a pixel line shown on the bottom of the screen
at time t, and this pixel line appears in the middle of the
screen after scrolling upwards to see the content below. If
the distance of these two positions is known, along with the
time interval between the two positions, the real-time

scrolling speed can be calculated. Specifically, the pixels of
an image or a part of an image can be extracted into a pixel
sequence line by line. Hence, at time t, all pixels of an image
displayed on screen can be expressed as a pixel sequence,
and a certain pixel line of the image can be expressed as a
subsequence. By matching the subsequence in the pixel
sequence of the whole screen, it is easy to obtain the position
of the subsequence in the screen pixel sequence at time t.
After the scrolling time 4t, the subsequence has forwarded
(or backwarded) for a distance, then its new position in the
screen pixel sequence can be obtained at time tþ4t. Then,
the distance that this subsequence has scrolled during 4t
can be calculated. The scrolling speed during4t is

S4t ¼ jP ðli; t�4tÞ � P ðli; tÞj
4t 	Rh

; (8)

where S is the scrolling speed during 4t, li is a certain line
of an image, P ðmi; tÞ is the position of li in the pixel
sequence of the image displayed on screen at time t and Rh

is the horizontal resolution (i.e., the number of pixels per
line) of the mobile device.

Operating system provides the interface to extract pixels
of a frame into a pixel sequence. In our system, the KMP
algorithm [12] is used to match a subsequence in the whole
pixel sequence. The complexity of the algorithm is
OðnþmÞ, where n is the length of the whole pixel sequence
and m is the length of the subsequence. Since the complex-
ity of other operations is Oð1Þ, the complexity of the total
process is OðnþmÞ.

However, since an image has many the same lines, it is
hard to localize the position of a subsequence in the pixel
sequence of the image correctly if the pixels of only one line
are used as a subsequence to match. In order to calculate
the scrolling distance of the two frames (i.e., two images dis-
played on screen before and after the scrolling time4t), it is
necessary to obtain the accurate positions of the matched
subsequence in the pixel sequence of both frames. Obvi-
ously, the best way is to match the whole common area
between the two frames. Nevertheless, since the scrolling
speed is calculated in real-time, the time interval 4t is very
small. So there are just a few lines that have been scrolled
out of the screen during 4t. i.e., the common area between
the two frames is almost as large as the whole screen, which
results in high cost of matching. For example, given a
mobile device with a resolution of 960� 640, we have to
match a subsequence (common area) whose length is close
to 960� 640 ¼ 614;400.

In order to decrease this cost, we try to decrease the
size of the matching area without influencing the correct
rate. To determine the size exactly, experiments are
implemented to compute scrolling distance using the
above method and compare the computed result with the
ground truth. Specifically, the experiments are based on
1,000 random webpages (containing graphs, plain texts,
and the mix of both) on three mobile devices (i.e., Nexus
One with a processor of QSD8250 1 GHz, Nexus Prime
with a processor of OMAP4460 1.2 GHz, and Galaxy
Nexus with a processor of Exynos 4210 SOC 2-core
1.2 GHz). The result is shown in Fig. 12. It can be seen
from Fig. 12 that the correct rate curves are very close to
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each other with a width (i.e., the number of pixels every
line) greater than or equal to 10, while the correct rate
curves tend to be stable with a height (i.e., the number of
lines) greater than or equal to 10. With this 10� 10 pixel2

as the matched area, we can get an correct rate of 97:4
percent. Hence, an area with the size of 10 pixels every

line and 10 lines (i.e., 10� 10 pixel2) is an ideal area to
match for computing the scrolling distance. Morever, the
total time of computing the real-time scrolling speed once

is 1:2 ms, which is fast enough for E3 since the frame rate
is up to 60 fps, and a time interval of 1:2 ms could guaran-
tee the scrolling speed be calculated once as soon as the
frame refreshes. The process then calculates the scrolling
speed at most 60 times, taking 72 ms in one second. In
other words, the CPU overhead is up to 7:2 percent,
which is quite small for the overall CPU overhead. Hence,

we use a 10� 10 pixel2 area as a matching area to match
in the two frames before and after frame refreshing to
obtain the accurate scrolling distance during 4t. After
that, the real-time scrolling speed can be calculated
according to Equation (8). Furthermore, the real-time
scrolling speed is used in the Optimal Frame Rate Calcula-
tion procedure to obtain the optimal frame rate in accor-
dance with the user preference model.

4.3.2 Frame Rate Controlling

The Frame Rate Controlling can dynamically adjust the dis-
play frame rate to the optimal frame rate. Generally, the
process of display update is a three-steps loop, i.e.,Wake
up, Update, and Sleep. On each iteration, the control thread
wakes up and then update an image to the screen. After the
display is updated, the control thread sleeps 1/60 seconds
to make sure the frame rate does not exceed the 60 fps
hardware limit.

As we discussed in Section 3.2, the frequently executed
image building procedure is the root cause of high energy
consumption during scrolling operations. In order to save
energy, the frequency of image building should be
reduced. Before the control thread falls asleep, E3 calcu-
lates the optimal frame rate according to the current
scrolling speed and preference model, then converts the
optimal frame rate to a corresponding time interval and
takes it as the sleep time.

More specifically, with E3 employed, a sleep time
changing step is added into the iteration. We take note of

the time consumed by update as t, then the sleep time in
this iteration should be

Tsleep ¼ 1

rmin
� t: (9)

Instead of just using the 1
rmin

as sleep time, we introduce
t to improve the accuracy of frame rate controlling.
Additionally, the changing of frame rate will not exceed
60 times per second. Thus, considering only simple cal-
culations are involved here, we could also infer that the

overhead of E3 is negligible.

4.4 Evolving Stage

Although E3 uses an accurate model, the uniform satisfied
frame rate model, to describe users preference on scrolling
speed, the performance can be improved by considering the
preference of a specific user. In order to keep the pace with

such evolution, E3 should provide corresponding mecha-
nism to build a user preference model for each user, i.e.,
user-specific satisfied frame rate model.

The workflow of E3’s self-evolving is shown in Fig. 13.

Based on the user satisfied frame rate model, E3 adjusts the
frame rate based on the real-time scrolling speed. However,
after a period of usage, the user may feel unsatisfied with
the current configuration, i.e., the user satisfied frame rate
model. In that case, the user can always use an evolving
program to adjust parameters of preference model. All a
user has to do is to choose to have a longer battery life or a
better user experience.

In order to guarantee user experience and maximize
energy saving simultaneously, it is necessary for the user to
evaluate the impact of frame rate on both user experience
and energy saving. We thus design a new least-square
regression estimator, called E2RSS, which can be used to
adjust the trained Logarithmic model.

More specifically, when the predicted satisfied frame
rate from a model is lower than the frame rate that user
demands, there is a user experience loss, which is
defined as:

ExpLoss ¼ b� ðrminðsiÞ � fðsiÞÞ; (10)

where rminðsiÞ is the user satisfied frame rate at scrolling
speed si and fðsiÞ is the predicted satisfied frame rate at
speed si. Similarly, when the predicted satisfied frame rate
is higher than the frame rate that user demands, the extra
frame rate will be an energy waste, which is defined as:

EngLoss ¼ ð1� bÞ � ðfðsiÞ � rminðsiÞÞ: (11)

b in Equations (10) and (11) is a weight which represents the
balance factor between energy and user experience.

Fig. 12. Correct rate of different area size.

Fig. 13. Illustration of E3 evolving mechanism.
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Based on Equations (10) and (11), we define Energy-Expe-
rience-Residual (E2R) to evaluate the accuracy and efficient
of a user-specific model at one specified scrolling speed.

E2R is defined as:

E2R ¼ ExpLoss2 if rminðsiÞ > fðsiÞ
EngLoss2 if rminðsiÞ < fðsiÞ;

�
(12)

E2R gives estimations that are more precise on ExpLoss
and EngLoss.

Energy-experience-residual sum of squares (E2RSS) is an
energy-aware and experience-aware estimator to evalu-
ate the accuracy and efficiency of regression, which is
defined as

E2RSS ¼ 1

n

Xn
i¼1

E2Ri: (13)

E2RSS produces a more precise and user-aware model

than RSS. The functionality of b in E2RSS is to balance the
preference between user experience and energy saving.
After the user makes his/her decision, a feedback message
(Energy-Prior or User-Experience-Prior) is sent from the Feed-
back Collecting to the Model Parameter Calibration. In the case
that a User-Experience-Prior feedback is received, the Prefer-
ence Model Generator will adjust b (initially, set to 0.5) to give

more weight on user experience. E3 then updates model
parameters according to the message context and finally

uses the new estimator E2RSS to regenerate a new prefer-
ence model in Preference Model Training. Thus, a biased
model according to the user feedback is obtained. As time
goes by, the user preference model will evolve and eventu-
ally, a better model fits the specific user can be achieved.

Meanwhile, the specific user preference model is sent to E3

cloud server, so that E3 can update the uniform model
based on more user preference traces.

5 PROTOTYPE IMPLEMENTATION

To test the feasibility of E3, we build prototypes using
different types of android-based smartphones and a tab-

let. Specifically, we implement E3 on a Nexus One with
Android 2.3, a Nexus S with Android 4.1, a Galaxy S II
with Android 4.0, a Nexus Prime with Android 4.0, and a
Galaxy Tablet with Android 3.2. We choose Android
smartphones/tablet to implement our prototype because
Android is an open-source operating system which facili-
tates the research on it. Our prototypes mainly consist of

two parts, i.e., a power meter and E3 software, as illus-

trated in Fig. 14. We implement E3 via developing appli-
cations and system modules on Android. The source code

of E3 and tools are available at [1].
We first conduct an experiment to measure the power

consumption during browsing a website with and with-
out E3 when using different devices. Fig. 15 shows the
results when using different devices. The energy con-

sumption without E3 on each device is normalized to 100
percent and the bars with deepest color represent energy

consumed by screen. It is clear that E3 can achieve con-
siderable overall energy savings on multiple smartphones
(38:2 percent on Nexus One and 39:5 percent on Nexus
Prime) and gets a good overall energy saving on the tab-

let (29 percent on GALAXY Tab). The reason that E3 gets
higher energy saving ratio on smartphones than the tablet
is because tablets have bigger screens that consume much
more energy.

We then present the energy saving of E3 while surfing on
a series of websites, as shown in Fig. 16. The bars represent

the CPU energy consumption with and without E3 while

browsing these websites, we observe that E3 significantly
reduces the CPU power to 57:3 percent in average. Further-
more, the line shows the overall energy saving achieved by

E3. From this line, we observe the overall energy saving is
up to 33 percent. One interesting observation we have is
that the energy saving while browsing Twitter is not as high
as the other websites. Through experiments, we find that
the frame rate while browsing Twitter is extremely low,

which leaves little room for E3 to improve the energy-effi-

ciency. Even though, E3 still can save 9:8 percent of the
CPU energy consumption while browsing Twitter.

Fig. 14. User interface, measurement tools, and testbeds.
Fig. 15. Energy consumption on multiple devices during a web surfing
with and without E3.

Fig. 16. Energy-saving of E3 while surfing on a series of websites.
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The results of the above experiments show that E3 signifi-
cantly reduces the power consumption caused by scroll-
ing for different types of smartphones/tablet. We will

thoroughly evaluate E3 via extensive experiments in the
following section.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of E3 by ana-
lyzing real traces collected from 327 volunteers. During the
experiments, each volunteer received two smartphones

with and without E3, and power meters attached to both
phones. We note that the volunteers are not aware of which

smartphone is embedded with E3. Then, each volunteer is
asked to use different applications (around 10 minutes for
each App) on the two smartphones. We first evaluate the

impact on both user experience and energy efficiency of E3

in various smartphone applications. After that, we discuss
the impact of the balance factor b. Finally, the overhead of

E3 is analyzed.

6.1 Impact on User Experience of E3

The volunteers are requested to grade the experience differ-
ence of the two smartphones. Our grading system has ten
levels, in which the level ten indicates that there is no user
experience difference between the two kinds of smart-
phones and grade level declines as the user experience dif-
ference increases.

From the collected traces, the average grades of user
experience under the different applications and models are
shown in Fig. 17a. We observe that in each model and appli-
cation, E3 with the Logarithmic model has the highest user
experience grade for each application. For example, the
Reader application with the Logarithmic model gets 8:85 in
average. In contrast, we notice that the Linear model has a
worse user experience, e.g., the average user experience
grade on the Linear model is 6:2 in Reader. This is because
the curve of the Linear model is far from the true user pref-
erence. Besides, the Inverse and the Sqrt model also have
lower user experience grades than the Logarithmic model,
with the same reason as the Linear model. Therefore, Loga-
rithmic model has the best performance on user experience
among these four models. Similar results can be found in
other applications, such as Browser, Facebook App, and

Google Map, indicating that E3 achieves a good user experi-
ence across different applications. Based on the results and

analysis above, we conclude that E3 can still give consider-
ation to the user experience while adjusting the frame rate.

We next compare the performance of the uniform model
to that of the user-specific models [29]. The results are
shown in Fig. 17b. From this figure, we observe that
although the user-specific models get slightly higher scores
than the uniform models, the performance difference
between our uniform model and the user-specific models is
very small. Since the uniform models are approximated to
the “average” of all the user-specific models, the uniform
model can satisfy most of users without going through a
model-training period, thus providing better user experi-
ence. Compared with the uniform model, the user-specific
models [29] require the user to go through a model-training
period, which could impose an impact on user experience
while using E3-enabled smartphones.

6.2 Impact on Frame Rate and Energy-Efficiency
of E3

We further evaluate the impact on frame rate and energy
efficiency of E3 over different applications. Fig. 18 shows
CDF of frame rate while using four popular applications

with E3. For the most scrolling-intensive application,

Browser (according to the results in Fig. 3), E3 successfully
reduces the frame rate to 27 fps for more than 70 percent
volunteers. For Reader, frame rates in 70 percent cases are

reduced to less than 30 fps. The results tell us that E3 could
reduce 1/3 � 1/2 display updates for most users in daily-
used applications.

Fig. 19 plots complementary cumulative distribution
function (CCDF) of energy saving in four applications
achieved by E3. In this figure, take Reader for example, E3

with the optimized model can save more than 47 percent
CPU energy consumption and more than 26 percent over-
all energy consumption (CPU, Radio, Screen, and Sensors

energy consumption) for 70 percent volunteers. Also, E3

without the optimized model saved over 45 percent of
CPU energy saving and more than 23 percent of overall

energy consumption for 70 percent users. Similarly, E3

achieved significant energy saving in the other applica-

tions. In summary, E3 realize a remarkable energy saving
on both CPU and overall energy consumption across mul-
tiple popular applications.

Moreover, we compare the energy saving of four applica-
tions achieved by E3 with the optimized model to that of the

Fig. 17. (a) Average grades of user experience in different models and
applications, (b) Average grades of user experience in uniform and user-
specific frame rate models. Fig. 18. CDF of frame rate in four popular applications with E3.
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model in [29]. The results are shown in Fig. 20 and the

energy consumption of E3 with the model in [29] is normal-

ized to 100 percent. It can be seen that E3 with the opti-
mized model can save more CPU and overall energy

consumption than E3 with the model in [29].

6.3 Impact of Balance Factor b

We use the normalized energy saving here, to compare
the impact of the balance factor b under the same crite-
rion. The normalization is done by uniformly mapping
the energy saving interval into ½0::10
, while b changes
from 0.1 to 0.9. The minimum energy saving is mapped
to 0 and the maximum is mapped to 10. The meaning of
user experience scores are the same with the grades in
Fig. 17. The normalized energy saving and user experi-
ence of four applications are shown in Fig. 21. It can be
seen that, in all cases, with b changes from 0.1 to 0.9, the
user experience shows an uptrend while the energy sav-

ing shows a downtrend. In E2RSS, a higher b value
means that more weight is given to the user experience
and vice versa. We can also see that, after b exceeded 0.5,
the growth of user experience is limited. In contrast,
the energy-efficiency downward trend is relatively well-
distributed with the growth of b. This result shows that
when b ¼ 0:5, we could get an acceptable user experience
while keeping a good energy-saving. Therefore, it is bet-
ter to set the initial value of b to 0.5.

6.4 Overheads Analysis

Although E3 monitors the user input in real-time and
adjusts the frame rate according to the scrolling speed, it

causes only negligible overheads. First, when there is no

interaction on touch-screen, E3 causes no computation so

that no energy is consumed by E3. Second, when there is
scrolling operations, the event catching and optimal frame
rate calculation have only Oð1Þ computational complexity,
while the CPU energy consumption can be reduced up to 60

percent by E3. As a result, E3 is lightweight and the over-
head could be ignored.

7 CONCLUSION

In this paper, by analyzing the real traces, we have
found that scrolling operation consumes a great amount
of energy on smartphones. By further investigation, we
have found that the satisfied frame rate is far less than
the system default frame rate and the Logarithmic model
precisely describes the relationship between the satisfied
frame rate and the scrolling speed. We have proposed a
scrolling-speed-adaptive frame rate controlling system,

E3, which significantly reduces the power consumption
caused by the scrolling operations while keeping the
user experience un-compromised. We have implemented

E3 on several types of smartphones and a tablet. Exten-

sive experiment results demonstrated the efficiency of E3

design.
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